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Abstract

Model reuse attempts to construct a model by utilizing ex-
isting available models, mostly trained for other tasks, rather
than building a model from scratch. It is helpful to reduce the
time cost, data amount, and expertise required. Deep learning
has achieved great success in various tasks involving images,
voices and videos. There are several studies have the sense of
model reuse, by trying to reuse pre-trained deep networks ar-
chitectures or deep model features to train a new deep model.
They, however, neglect the fact that there are many other fixed
models or features available. In this paper, we propose a more
thorough model reuse scheme, FMR (Fixed Model Reuse).
FMR utilizes the learning power of deep models to implic-
itly grab the useful discriminative information from fixed
model/features that have been widely used in general tasks.
We firstly arrange the convolution layers of a deep network
and the provided fixed model/features in parallel, fully con-
necting to the output layer nodes. Then, the dependencies be-
tween the output layer nodes and the fixed model/features are
knockdown such that only the raw feature inputs are needed
when the model is being used for testing, though the helpful
information in the fixed model/features have already been in-
corporated into the model. On one hand, by the FMR scheme,
the required amount of training data can be significantly re-
duced because of the reuse of fixed model/features. On the
other hand, the fixed model/features are not explicitly used
in testing, and thus, the scheme can be quite useful in ap-
plications where the fixed model/features are protected by
patents or commercial secrets. Experiments on five real-world
datasets validate the effectiveness of FMR compared with
state-of-the-art deep methods.

Introduction

Machine learning methods including deep learning tech-
niques have achieved great success in many fields. However,
there are some obvious deficiencies, e.g., lots of demands
on training consumptions including both computational ex-
penses and labeled examples. Besides, lacking of adaptabil-
ity in current learning techniques also narrows the range of
application for learning techniques.

Model reuse (Zhou 2016) attempts to construct a model
by utilizing existing available models, mostly trained for
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other tasks, rather than building a model from scratch. This
offers a great potential to reduce the required amount of
training examples and training time cost, because the ex-
ploitation of existing models may help set a good basis for
the training of a new model. An example has been shown
in (Li, Tsang, and Zhou 2013), where a model aims to op-
timizing AUC can be obtained with much less effort by
reusing a model optimizing accuracy. Note that model reuse
also reduces the requirement of expertise in training the
models, because the user can start from a good model gen-
erated by experts, and thus, an expert-level new model can
be obtained though the user him/herself is not an expert.

In the deep learning community, there are several pieces
of studies trying to reuse the convolution layers in deep
structures, e.g., by initializing a network with weights from
pre-trained networks (Yosinski et al. 2014); by proposing
a new network architecture to transfer features from pre-
trained networks (Long and Wang 2015). These models are
generally based on the strategies of re-training on dataset B
with trained deep networks on dataset A, i.e., they mainly
focus on the transfer of information of the latent weights
in deep networks, neglecting the existence of fixed models
which might not be deep models, and fixed features which
might not be deep features.

In this paper, we propose the FMR (Fixed Model
Reuse) approach. This is a more thorough model reuse
scheme, which arranges the convolution layers and the
model/features used in general tasks in parallel, and fully
connecting to the output layer nodes. A knockdown strat-
egy is also proposed for reducing the dependencies between
the “fixed” model/features and the output layer nodes grad-
ually and eventually makes the whole model independent to
the original fixed model/features. As a consequence, only
the raw features are required in testing phase, though the
helpful information in the fixed model/features have already
been incorporated into the deep structure.

The rest of this paper starts from introduction of related
work. Then we propose our approach, followed by experi-
ments and conclusion.

Related Work

Deep networks are able to learn nonlinear feature represen-
tations that nest high-level abstractions behind data and have
achieved great success in many scenarios (Tian et al. 2014;
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Kang, Li, and Tao 2016). There have been many researches
on deep learning methods, e.g., Karpathy et al. (2014) stud-
ied multiple approaches that extends the connectivity of a
CNN in time domain to take advantage of local spatiotem-
poral information; Wang et al. (2015) proposed the DC-
CAE (deep canonically correlated autoencoders) for multi-
ple modal representation learning; Srivastava et al. (2014)
randomly dropped units (along with their connections) from
the neural network during training to deal with overfitting.
However, these deep methods always need large volume of
labeled training examples and expensive training processes.

Reusability has been emphasized by (Zhou 2016) as a
crucial characteristics of the new concept of learnware. It
would be ideal if models can be reused in scenarios that are
very different from their original training scenarios. This is
of course a big challenge, whereas reusing models in rela-
tively similar scenarios have already been demonstrated well
useful. Li, Tsang, and Zhou (2013) has shown that by start-
ing from a trained model optimizing accuracy, it is easier to
construct a model optimizing AUC. Transfer learning (Pan
and Yang 2010) also provides possible techniques to model
reuse, by emphasizing that there must exist some bridge con-
necting a source domain and target domain, though they gen-
erally do not explicitly reuse an existing model.

There are also some deep transfer learning ap-
proaches (Yosinski et al. 2014), e.g., hidden layers trained
for fitting multiple domains (Ajakan et al. 2014); Maxi-
mum Mean Discrepancy measure incorporated as a regu-
larization to reduce the distribution mismatch in the latent
space (Ghifary, Kleijn, and Zhang 2014). However, these
deep models always reuse the net structure and weights di-
rectly from source networks and can hardly utilize the exist-
ing pre-provided model/features.

In this paper, we propose a complete novel model reuse
technique with deep structures, which directly substitute
the sophisticated fixed model/features used in general tasks
with a deep network rather than transferring with pre-trained
weights or learning with source/target examples. A knock-
down technique is developed for achieving such a purpose.
The new operator knockdown is used for eliminating the col-
lections between the sophisticated model/features and the
deep structure, and it seemed similar to dropout yet is com-
pletely different in purpose and effects.

Dropout (Srivastava et al. 2014) is proposed to reduce the
overfitting problem by randomly setting hidden unit activi-
ties to zero during training a deep network. The performance
of deep networks on various tasks can be significantly im-
proved with dropout technique and Gao and Zhou (2016)
theoretically showed that dropout is able to exponentially re-
duce Rademacher complexity in deep neural networks. Nev-
ertheless, different to the connections can be reset and up-
dated with another trial of iteration in dropout, our knock-
down strategy vanishes the dependencies between the out-
put layer nodes and the fixed model/features. Once the de-
pendencies is disconnected by a knockdown operation, the
related features will not be functional forever. Thus, eventu-
ally after all connections of provided model/features are van-
ished, the discriminative abilities of the pre-obtained fixed
model can be imported into the deep network. Consequently,

users are only required to input the raw features instead of
extracting those sophisticated features during the test phase.
the scheme can be quite useful in applications where the
fixed model/features are protected by patents or commercial
secrets.

It is notable that biologists find that some early low-
level neural reflections of healthy human babies will dis-
appear when they grow up, only very limited parts of low-
level neural reflections, such as “knee jerk reaction” are kept
partly (Sembulingam and Sembulingam 2012). These corre-
sponding functions are taken over or replaced by the cen-
ter neural system, i.e., human brains (Interestingly, even the
“knee jerk” is also partially managed by the brain, the “knee
jerk” only takes place when attention loses focus). If we
treated those sophisticated model/features which are widely
used in various applications as low-level neural reflections,
e.g., MIFS which is widely used in action recognition (Lan
et al. 2015), and treated the powerful deep network as a “ma-
chine brain”, it is interesting that our knockdown strategy
and the whole model seems consistent with these biological
understandings.

Proposed Method

Notations

In this paper, without any loss of generality, sup-
pose we have N examples, denoted by D =
{(x1, y1), (x2, y2), · · · , (xN , yN )}, where each instance
has d-dimensional raw inputs, i.e., xi = [xi1 , xi2 , · · · ,
xid ] ∈ R

d, and yi ∈ {1, 2, , · · · , c} is the class label of xi.
In the traditional deep learning training procedure, deep
models generally compute the semantic feature represen-
tation of the input data by passing them through multiple
layers of nonlinear transformations, assume that the param-
eters in network are represented as Θ = {θl1 , θl2 , · · · , θlp},
and the output of the q-th layer can be denoted as xlq

i given
xi as the input instance. The output lo layer has c units.
Moreover, in our deep transfer learning scenarios, there are
additional df -dimensional sophisticated features for each
instance, i.e., zi = [zi1 , zi2 , · · · , zidf ] ∈ R

df . It is expected
that with these additional pre-fixed features, deep network
can transfer more information from these features while
reducing the dependencies to large amounts of training
examples. In another aspect, it is expected that deep transfer
learning can achieve better generalization performance than
ordinary deep networks given the same number of training
examples with the existences of additional task specific
fixed features. Eventually, in our configurations, training
data can be denoted as {xi, zi, yi}Ni=1.

Fixed Model Reuse (FMR) Approach

In this section, we mainly introduce the concrete steps on
how to transfer from fixed model/features to a deep structure
network. There can be several different setting:

• Target replacing with sequence training strategies:

A straight forward procedure could directly treat the fixed
features as the outputs of a deep network as Fig. 1 shows. Af-
ter training with sufficient examples, the activities/weights
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Figure 1: Target replacing with sequence training strategies.
x is the raw feature inputs; z is the fixed features; deep net-
work are composed with convolution layers, pooling layers
and fully connected output layers.

Figure 2: Parallel structure with knockdown strategies. x is
the raw feature inputs; z is the fixed features; z and Vp com-
pose the sophisticated model; in the parallel structure, the
deep network are also composed with convolution layers,
pooling layers and fully connected output layers.

learned in the first p layers (shown in yellow shadows) are
kept, and then replace the targets with classification labels.
This style of deep transfer is generally following the exist-
ing deep transfer learning methods (Yosinski et al. 2014;
Ajakan et al. 2014).

However, this strategy has obvious shortcomings, e.g.,
different from transferring between sources and targets with
different example distributions, this style of transferring is
managing different tasks in this two-step training phases,
one for features embedding and learning, the other is the
original classification. Besides, this style of transfer learn-
ing between features and deep networks obviously divided
into two phases, which definitely will induce more chances
of error accumulations. Third, the second step of this style of
transferring can sweep away the weights in layer l1, · · · , lp,
which are contributed by the first step with high probabili-
ties, unless there is substantial “theory” guaranteeing there
are relationships between fixed features and class labels.
This weakness is referred by almost all methods which are
learning with two phases.

• Parallel structure with Knockdown strategies:

To overcome the disadvantage of sequence targets re-
placing design. We put forward a novel configuration of
the structure together with a new learning strategy which

pushes the “information” from fixed model/features to the
deep networks in parallel, as shown in Fig. 2. Different from
the first setting which divided the training strategy into two
steps, we directly arrange the deep network and pre-obtained
model/features in parallel to the output layer nodes.

Specifically, the raw features x can be calculated among
several layers and can be finally represented as xlp , and
eventually fully connected with the output labels ys. All
convolution facts are denoted as Θ = {θl1 , θl2 , · · · , θlp−1

}
and the fully connected weights can be organized as a linear
mapping matrix W together with a nonlinear softmax func-
tion. Besides, in this parallel structure, there are also linear
connections between the provided features and the convolu-
tion network layer lp, which is also a full connection struc-
ture, these weights can be denoted as U . The provided fea-
tures and the labels are connected with linear weights Vp as
well. It is obvious that the provided fixed features and Vp

compose a traditional linear prediction model which could
be useful in conventional application.

Knockdown based Training

In many applications, e.g., sophisticated features are pro-
tected, only limited example features can be obtained for
training. It becomes a desire for seeking a substitution for
these fixed features. In this paper, we propose a novel knock-
down strategy for facilitating the “information transfer” of
fixed features z to the deep network, and eventually ensure
the deep network possessing the representation and discrim-
inative information of the fixed features z. The whole train-
ing procedure of FMR can be largely divided into several
iterative steps, that is

Weight Propagation (WP) As general CNN training, the
WP step focuses on reducing the errors made in the current
status of the network. Considering there are two lines in par-
allel in the network as shown in Fig. 2. Without any loss of
generalities, the loss function implied in the parallel network
structure is:

L(Θ,W,U, Vp) =
N∑
i=1

�(xi, zi, yi) + λLreg, (1)

where

�(xi, zi, yi) = �̃(x
lp
i , zi, yi) + �̂(x

lp
i , zi);

�̃(x
lp
i , zi, yi) = yi log h(f(x

lp
i ) + g(zi));

�̂(x
lp
i , zi) =

1

2
‖zi − x

lp
i U‖2F .

Here x
lp
i is the output feature of convolution network layer

lp with raw input example xi, �̃(x
lp
i , zi, yi) is the label pre-

diction loss function (�̃ actually can be with any convex loss
functions), in which the f(x

lp
i ) is the prediction of xlp

i , we
define as linear function x

lp
i W + bxlp for simplicity here,

bxlp is the bias for predictors of xlp , h is a soft-max oper-
ator and g(zi) is the prediction of the provided features z,
we also define as linear function zVp + bz, bz is the bias
of fixed features z. Lreg can be any convex regularization,
while in order to facilitate the WP step, in this paper, we
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(a) Weight Propagation (WP) Update weights
Θ, U,W backwards (marked with yellow left-
wards arrows) to reduce errors on y, z

(b) Knockdown (KD) Randomly eliminate some
features z together with changing corresponding:
Vp (the fixed model) and U (both are marked with
blue arrows)

(a’) Weight Propagation after Knockdown
(WP/K) Update Θ, U, Vp (marked with yellow
left-wards arrows) with remaining z on changed
network

Figure 3: Training approach for FMR model: WP/K→ KD iteration. It is notable that in KD step, corresponding connections
Vpi,∗ and U∗,i in weight matrix Vp, U are set to zeros while feature zi are eliminated

(
marked with white blanks in plot (b)

)
.

choose Lreg as: ‖W‖22 + ‖U‖22 + ‖Vp‖22. The parameter λ
controls the trade-off between the loss and regularization.
In WP step, the derivatives are taken to portion parameters,
i.e., Θ,W,U , with the help of Back Propagation technique
as shown in Fig. 3(a).

Knockdown (KD) In order to eliminate the influence of
the fixed features z during the training procedure, we need
to remove those connected parts corresponding to features
z gradually and finally vanish all related components. Be-
sides, in each adjustment on removing parts of those com-
ponents, it is required additional steps for making the whole
deep structure self-consistent which can further reduce the
prediction errors. In this paper, we propose the knock-
down and consequence procedures, i.e., Weight Propaga-
tion after knockdown for the purpose above in Fig. 3(b),
we randomly remove several components of features say-
ing zi,j1 , zi,j2 , · · · , where j1, j2 ∈ [1, df ], and consequently,
the corresponding connections, i.e., U·,j1 , U·,j2 , · · · in ma-
trix U , Vpj1,· , Vpj2,· , · · · in matrix Vp are restricted to zero
as well. These KD steps will act for several trials in the
whole iterations of the Fig. 3 steps. In each iteration, the
KD step randomly eliminates components without replace-
ment, and finally will cause all the fixed features z and the
fixed prediction models Vp disconnected with the deep net-
works. Note that in Fig. 2 and Fig. 3, the deep networks are
shown as convolution networks, while as a matter of fact, the
networks can be with any deep structure. After all features
or the whole predictor models removed, the trained model is
the same structure as a traditional deep network. Thus, in the
test phase, only raw features x are required as inputs for the
deep model. No sophisticated features are further desired.

Weight Propagation after Knockdown (WP/K) This step
is generally the same as WP step excepting for updating Vp.
However, we here emphasize that the KD step could break
the structure of the originally consistent network, therefore
after the knockdown, this is an additional task for the suc-
cess weight propagation step, i.e., harmonize the weights
and make the network re-consistent, finally reducing the er-
rors. As to the configurations, for deep weights propagation
in our implementation, we follow the methods in (Chat-
field et al. 2014). Specifically, the training procedure fol-

Algorithm 1 Training Algorithm For FMR
Require: limited examples together with fixed features D̂ = {xi, zi, yi}N

i=1;
eliminate number of features in each iteration: m; elements in each batch: n;
max-iter: k.

1: repeat

2: Create Batch: Randomly pick up n examples from D̂ without replacement
3: Calculate the loss L
4: WP/K step (weight consist): Obtain the derivative ∂L/∂W , ∂L/∂U ,

∂L/∂Vp, ∂L/∂Θ. Update parameters W,Vp, U,Θ;
5: KD step (model transfer): Randomly eliminate m fixed features

without replacement and set corresponding connections to zero, i.e.,
U·,j1 , U·,j2 , · · · = 0, Vpj1,· , Vpj2,· , · · · = 0;

6: until converge or reach the max-iter

lows (Krizhevsky, Sutskever, and Hinton 2012), using gra-
dient descent with momentum. The hyperparameters are the
same as used by (Krizhevsky, Sutskever, and Hinton 2012):
momentum 0.9; weight decay 5 · 10−4; initial learning rate
10−2, which is decreased by a factor of 10. To prevent the
internal covariance shift phenomenon, we normalize each
channel of the feature map averaging over spatial locations
and batch instances as in (Ioffe and Szegedy 2015), in ad-
dition, we use weight sharing technique in our network,
each filter h(xi) is replicated across the entire visual field
and these replicated units share the same parameterization
(weight vector and bias), which aims to increase learning ef-
ficiency by greatly reducing the number of free parameters
being learnt. It is notable that in the WP/K step, the param-
eters Θ, U, Vp are depended only on those fixed features re-
maining on the network changed by the KD step as shown in
Fig. 3(a’). The detail training procedure is shown in Alg. 1.

Experiments

FMR can reuse sophisticated model/features and eventually
replace the fixed models, i.e., in the test phase, only the raw
features x are required as inputs rather than the features
z extracted by mature extractors. In this section, we will
demonstrate that FMR can replace the fixed models based
on features z with a deep structure given raw features as
inputs and provide highly-competitive results. In particular,
we demonstrate these phenomenons on two real tasks, i.e.,
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Table 1: The performance (avg. accuracy) of compared im-
age classification methods. The best performance is marked
in bold. Deep learning methods are marked with *.

Compared methods WIKI Flickr8k

Drift (Kobayashi 2014) 22.5 51.1
LLC (Wang et al. 2010) 29.2 59.9
ScSPM (Yang et al. 2009) 31.1 60.7
DCM (Ngiam et al. 2011)* 30.3 57.8
CNN (Vedaldi and Lenc 2015)* 42.6 69.9
UDAB (Ganin and Lempitsky 2015)* 42.6 66.0
SQR (Sequence Reuse)* 42.7 72.6

FMR 43.3 ± 0.5 74.8 ± 0.7

image classification and action recognition. In image clas-
sification task, two real-world datasets are tested and fixed
models built on surrounding texts of images are acted as so-
phisticated models. The action recognition task is to recog-
nize the human actions in short clips of videos and there are
three real-world datasets in this task.

During the training phase, FMR contains a network with
deep architecture which is in parallel with the fixed mod-
els. The deep network is implemented the same as MatCon-
vNet (Vedaldi and Lenc 2015), which comprises 8 learnable
layers, 5 of which are convolutional layers, and the last 3 are
fully-connected. All input images are normalized into the
size of 224× 224. Fast processing is ensured by the 4 pixels
stride in the first convolutional layer. We run the following
experiments with the implementation of an environment on
NVIDIA K80 GPUs server and our model can be trained
about 290 images per second with a single K80 GPGPU.

In image classification task, image pixels are treated as
raw features and a linear model built on surrounding texts is
considered as the sophisticated fixed model. In action recog-
nition task, we follow (Lan et al. 2015), i.e., randomly ex-
tract 10 frames in each clip, and treat the extracted images as
the raw inputs, while the extracted MIFS features are treated
as the sophisticated features. In classification tasks, 66% in-
stances are chosen as training set and the remains are test
set. While in action recognition, training and test splits are
provided by (Lan et al. 2015). We repeat experiments 30
times on each dataset, the average accuracies are recorded
and evaluated. The parameter λ in the training phase is tuned
in {0.1, 0.2, · · · , 0.9}. When the variations between the ob-
jective value of Eq.1 is less than 10−5 in iterations, we con-
sider FMR converges.

Image Classification

Datasets and Compared Methods Two real world
datasets are: the WIKI (Rasiwasia et al. 2010) is a rich-text
web document dataset with images, which has 2,866 docu-
ments extracted from Wikipedia. Each document is accom-
panied by an image and is labeled with one of the ten se-
mantic classes. We represent the text information by 7343-
dimensional vectors based on TF-IDF (Salton and Buckley
1988); Flickr8K (Hodosh, Young, and Hockenmaier 2013)
consists of 8,000 images that are each paired with captions

which provide clear descriptions in 4 categories (Srivastava
and Salakhutdinov 2012). The texts are represented by 3000-
dimensional vectors based on TF-IDF as well. FMR is firstly
compared to 3 image classification algorithms with tradi-
tional image features, i.e., LLC, ScSPM and Drift. Since
there is a deep network in FMR, CNN is also compared in
the experiments, performance of DCM is also listed since
in FMR both the images and surrounding texts are used for
training, yet note that only image raw pixels are needed for
classification in FMR.

• LLC: locality preserving feature projection; max pooling
is used for generating the final features; linear classifier is
used (Wang et al. 2010);

• ScSPM: generalized vector quantization for sparse cod-
ing; followed by multi-scale spatial max pooling; lin-
ear SPM kernel based on SIFT descriptor for classifica-
tion (Yang et al. 2009);

• Drift: Dirichlet Fisher kernel for new histogram
feature representation; linear classifier for classifica-
tion (Kobayashi 2014);

• DCM: Multi-modal subspace feature extraction; linear
classifier for classification (Ngiam et al. 2011);

• CNN: standard pre-trained CNN with imageNet; only
use the image as input for both training and test
phase (Vedaldi and Lenc 2015);

• UDAB: Deep transfer learning approach; linear classifier
for classification (Ganin and Lempitsky 2015);

• SQR: Target replacing with sequence training strategies;
as mentioned in section 2

From Table 1 it reveals that FMR has achieved the best
classification performance, i.e., the mean accuracy, on two
datasets compared to all other compared methods.

Action Recognition

Datasets and Compared Methods Three most widely
used datasets are selected as the action recognition bench-
marks, i.e., the HMDB51 dataset (Kuehne et al. 2011) has
51 action classes and 6766 video clips extracted from dig-
itized movies and YouTube (Kuehne et al. 2011). We use
original videos in this paper and standard splits. Mean ac-
curacies are used for evaluation of the performance; The
UCF101 dataset (Soomro, Zamir, and Shah 2012) has 101
action classes spanning over 13320 YouTube videos clips.
We use the standard splits with training and test videos pro-
vided by (Soomro, Zamir, and Shah 2012) and mean ac-
curacies are reported as well; The UCF50 dataset (Reddy
and Shah 2013) has 50 action classes spanning over 6618
YouTube videos clips and mean accuracies over all classes
are also reported. The fixed model/features in action recog-
nitions are the state-of-the-art MIFS features.

We list several most recent features and models of ac-
tion recognition for comparison, i.e., BoF (Sapienza, Cuz-
zolin, and Torr 2014), CFS (Oneata, Verbeek, and Schmid
2013), SFV (Peng et al. 2014), FHNN (Karpathy et al.
2014), TSCN (Simonyan and Zisserman 2014), IT (Wang
and Schmid 2013a), MIFS (Lan et al. 2015), SQR.
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Table 2: The performance (avg. accuracy) of compared action recognition methods. The best performance is marked in bold.
Deep learning methods are marked with *.

HMDB51 UCF101 UCF50

(Oneata, Verbeek, and Schmid 2013) 54.8 (Karpathy et al. 2014)* 65.4 (Narayan and Ramakrishnan 2014) 89.4
(Wang and Schmid 2013a) 57.2 (Sapienza, Cuzzolin, and Torr 2014) 82.3 (Ciptadi, Goodwin, and Rehg 2014) 90.0
(Simonyan and Zisserman 2014)* 59.4 (Wang and Schmid 2013b) 85.9 (Oneata, Verbeek, and Schmid 2013) 90.0
(Peng et al. 2016) 61.1 (Peng et al. 2016) 87.9 (Wang and Schmid 2013a) 91.2
(Peng et al. 2014) 66.8 (Simonyan and Zisserman 2014)* 88.0 (Peng et al. 2016) 92.3
(Lan et al. 2015) 65.1 (Lan et al. 2015) 89.1 (Lan et al. 2015) 94.4
SQR (Sequence Reuse)* 62.9 SQR (Sequence Reuse)* 85.3 SQR (Sequence Reuse)* 91.1

FMR 68.9 ± 2.3 FMR 91.6 ± 1.2 FMR 92.4 ± 1.3

(a) UCF50 (b) HMDB51

Figure 4: Confusion Matrix of action recognition datasets

Result Note that on these three action recognition bench-
marks in Table 2 different methods are compared. This
is simply because we only compared FMR with the six
best approaches for each dataset in past 5 years open re-
ported publications. From Table 2, it reveals on HMDB51
and UCF101, FMR outperforms all six best compared ap-
proaches obviously, and on UCF50, FMR achieves the
runner-up and makes a high-competitive result, i.e., only
MIFS method performs better than FMR. The confusion ma-
trix of 50 classes on UCF50 and 51 categories on HMDB51
are also plotted in Fig. 4, where the numbers in the confu-
sion matrix are normalized and replaced by color (from blue
to yellow, and white represents 83% while yellow represents
100% in quantity). From Fig. 4, it can be clearly found that
on UCF50, the confusion matrix of FMR concentrated on
the main diagonal which means FMR performs well on most
classes. Similarly, FMR achieves 70% accuracy on most cat-
egories according to the confusion matrix on HMDB51.

In order to investigate the convergence behavior for FMR,
we conduct more experiments and record the test error curve
during iterations in Fig. 5, where it clearly shows the pro-
posed FMR converges faster than ordinary CNN with the
help of knockdown strategy, and successfully utilizes the
fixed model information for accelerating the training. Be-
sides, we also investigated the affections on the number of
drooped features in each iteration, and find FMR achieves
91.6 on UCF101 when dropping 52 features in each itera-
tion, while with dropping 104 features iteratively, the accu-
racy only changes slightly to 92.0.

Figure 5: Test error in WP/K-KD iterations on UCF101

Conclusion

Reusable model design becomes a desire with the rapid ex-
pansion of machine learning applications and reusability is
emphasized as a crucial characteristics of learnware. Model
reuse is helpful to reduce the resource consumptions and
avoid building learners from scratch. In this paper, we follow
the learnware principle and propose more thorough model
reuse approach: FMR. Different from the existing reusable
deep learners which are mainly reuse the pre-trained net-
work weights, our approach exploits those mature model
or sophisticated features which have been widely used in
various applications. The discriminative information behind
these mature model/features are further taken over by the
powerful deep network structures in FMR. More specif-
ically, FMR arranges the deep network and the sophisti-
cated model/features in parallel initially, and we also pro-
pose a novel training strategy “knockdown”, which can grad-
ually eliminate the influences from fixed model/features and
eventually provide a deep learner relying on raw features
only. Thus, this scheme guarantees no more requirements
on mature model or expensive features in FMR test phase
and can be quite useful in applications where the mature
model/features are protected by patents or commercial se-
crets. Experiments on five real-world datasets validate the
effectiveness of our methods compared with other state-of-
the-art methods. It is interesting to discuss the possibilities
of integrating multiple abilities rather than the discrimina-
tivity only into one deep network with the help of multiple
mature model in various applications, therefore, a further in-
vestigation on transferring various models in different appli-
cations into a single deep model by the FMR framework can
be an interesting future work.
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